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ABSTRACT. We developed an index for use by New Jersey counties to measure West Nile virus (WNV)
transmission risk to the human population. We used a latent profile analysis to develop the index, identifying
categories of environmental conditions associated with WNV transmission risk to humans. The final model included
4 indicators of transmission risk: mosquito abundance and minimum field infection rate, temperature, and human
case count. We used data from 2004 to 2018 from all 21 New Jersey counties aggregated into 11 2-wk units per
county per year (N ¼ 3,465). Three WNV risk classes were identified. The Low Risk class had low levels of all
variables. The Moderate Risk class had high abundance, average temperature levels, and low levels of the other
variables. The High Risk class had substantially above average human case likelihood, average temperature, and
high mosquito infection rates. These results suggest the presence of 3 distinct WNV risk profiles, which can be used
to guide the development of public health actions intended to mitigate WNV transmission risk to the human
population.
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INTRODUCTION

West Nile virus (WNV) is a mosquito-borne
arboviral flavivirus and is the leading cause of
mosquito-borne disease in the USA (Fischer and
Hills 2015, McDonald et al. 2019). About 70–80% of
humans infected with WNV are asymptomatic
(Murray et al. 2011, CDC 2018). Among symptom-
atic cases, most are non-neuroinvasive typically
manifesting in fever, headaches, body aches, vomit-
ing, rash, and joint pain (Staples and Fischer 2015).
However, about 1 in 150 symptomatic cases develop
neuroinvasive WNV, characterized by meningitis or
encephalitis, and about 10% of those cases result in
death (CDC 2018). Between 1999 and 2018, there
were 50,830 total confirmed cases and 2,330 deaths
reported in the USA (CDC 2019).

West Nile virus occurs in a zoonotic cycle in
which birds are reservoirs and mosquitoes are the
vectors. The virus can spill over into incidental hosts
including humans and other animals (Staples and

Fischer 2015). Extant research has demonstrated that
spikes in mosquito abundance—the number of
mosquitoes circulating in an area—precede spikes
in mosquito infection (Bolling et al. 2009), and that
both mosquito abundance (Bolling et al. 2009) and
infections (Kilpatrick and Pape 2013, Karki et al.
2020) are positively associated with human cases.
Additionally, positive associations have been identi-
fied between WNV infection in horses and the
occurrence of human cases (Patnaik et al. 2006,
Ward and Scheurmann 2008).

Moreover, temperature and precipitation appear to
be associated with human infection and mosquito
abundance and infection. Temperature has been
found to be positively associated with mosquito
abundance, mosquito infection, and human WNV
occurrence (Reisen et al. 2006, Hahn et al. 2015, Paz
2015). Unpublished research using data from New
Jersey (L. Reed, personal communication) as well as
published research from the USA suggests that
human WNV occurrence is positively associated
with precipitation levels (Landesman et al. 2007,
Soverow et al. 2009). Other findings from Suffolk
County, New York, indicate that alternating periods
of high precipitation and/or wetter land surfaces
followed by extended dry periods with higher
temperatures throughout the spring and summer are
associated with increased mosquito infection rates
(Little et al. 2016). Alternatively, a study from
southern Florida indicated the opposite sequence: the
likelihood of human WNV cases increased when
preceded by periods of drought followed by wet
conditions (Shaman et al. 2005).

The only known validated index of WNV
transmission risk is the California Mosquito-Borne
Virus Surveillance & Response Plan (CMBVSRP;
California Department of Public Health 2020), which
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includes 6 variables scored on ordinal scales:
mosquito abundance and infection rate, average daily
temperature, human case count, infected dead bird
count, and sentinel chicken seroconversion count.
The risk index score is calculated by averaging the
scores of the variables for which data are available
(Barker et al. 2003).

Our model was based on the CMBVSRP but
included important modifications. First, we included
only the variables available for use in the New Jersey
Department of Health (NJDOH) WNV surveillance
program, by excluding sentinel chicken and dead bird
data and including equine cases and precipitation.
Second, rather than reducing variability and poten-
tially hindering classification by applying ordinal
transformations to some of our continuous variables,
we preserved the variability in those indicators by
retaining the interval structure.

Our index was intended to measure the current
WNV transmission risk to the human population
based on weather conditions, mosquito and horse
infection, and human cases during the previous 2 wk.
It was also intended for use by New Jersey county
mosquito control personnel as a descriptive (rather
than predictive) tool that integrates several sources of
information to document current WNV risk to county
residents, monitor changes in risk over time, and
support requests for additional resources.

To address these objectives, we first needed to
establish the presence of WNV transmission risk
levels. As such, the current study was intended to
answer the following questions: In data collected
between 2004 and 2018, are there unique profiles of
variables that suggest different levels of WNV risk in
New Jersey counties? If so, how many profiles exist?

MATERIALS AND METHODS

Sample characteristics: Our sample consisted of
all 21 New Jersey counties. There were no exclusion
criteria. All data were aggregated to the county level
in 2-wk intervals (i.e., half-months). Only the data
collected from CDC weeks 21–42 (half-months 11–
21, approximately late May through October) were
analyzed because these are the times when mosquito
trapping and testing typically occur in New Jersey.
To obtain our sample of 3,465 county half-months,
we took observations from 21 counties, across 11
half-months over 15 years.

The project received institutional review board
approval as an exempted study because all human
data were deidentified and aggregated to the county
level.

A retrospective data analysis was conducted on
data collected between 2004 and 2018 and obtained
from several secondary data sources described below.

Climatologic data: For climatologic variables, we
used data obtained in 2020 from the Rutgers NJ
Weather Network weather stations (Office of the
New Jersey State Climatologist at Rutgers Universi-
ty). We selected 27 stations from among the 66

stations that collected data used in our analysis
during at least part of the study period. Additionally,
we used data accessed in 2020 from the Global
Historical Climatology Network—Daily database
(National Oceanic and Atmospheric Administra-
tion—National Centers for Environmental Informa-
tion). Of the 34 New Jersey stations in this network
from which data were available during at least part of
the study period, 26 were selected for analysis. Three
stations were selected per county based on their
spatial distribution to optimize spatial coverage of
climatologic readings. In total, data from 53 weather
stations were used in the analysis. For some counties,
weather stations from adjacent counties were used
because of an insufficient number or distribution of
stations in the county. Thus, 10 stations were
included twice in the analysis: once for their ‘‘home’’
county and once as a proxy station for an adjacent
county.

Average temperature and total precipitation were
used as the climatologic variables. County half-
month average temperature was calculated by
obtaining the daily average for each weather station
and then calculating the mean of the daily averages
across all stations during the half-month. Daily
average temperature was calculated by taking the
mean of the maximum and minimum daily temper-
atures in degrees Fahrenheit. Average temperature
was included in the analyses as a continuous variable
in raw units.

To obtain half-month total precipitation, all daily
precipitation totals (in inches) from each day of the
half-month were summed across all county stations.
Because of a moderately positively skewed distribu-
tion, a square root transformation was performed on
total precipitation values, which were then used in
the analyses.

Mosquito abundance and infection rate: New
Jersey’s mosquito surveillance program involves
the collection of mosquitoes by county mosquito
control officials statewide, who set several types of
traps and collect specimens daily during mosquito
season. The specimens are sexed, speciated, and
counted by county personnel. These data are sent for
tabulation to the Rutgers University Center for
Vector Biology, which prepares weekly reports on
adult mosquito and vector surveillance for the
mosquito research and control community, as part
of a program funded by the New Jersey State
Mosquito Control Commission.

Specimens used to measure mosquito infection are
collected from all trap types besides New Jersey light
traps and are submitted for arboviral testing. The
specimens collected from New Jersey light traps are
used to measure mosquito abundance because these
traps are consistently run in the same location daily
throughout the season, regularly maintained, and
routinely calibrated for air flow to ensure sampling
consistency. For both the mosquito infection and
abundance estimates, only female mosquitoes—both
gravid and nongravid—were used.
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Mosquito abundance and minimum field infection
rate were calculated for ‘‘Culex mix’’ mosquitoes,
which includes 3 species that are difficult to visually
differentiate: Cx. salinarius Coquillett, Cx. pipiens
L., and Cx. restuans Theobald. In New Jersey, the
last 2 species are most commonly found to be
infected with WNV and, as such, were selected for
use.

Mosquito abundance was defined as the sum of
mosquito counts across all New Jersey light traps in
the county during a half-month. Because of a
severely positively skewed distribution and excessive
variability, with a high proportion of zero values, a
log10(x þ 2) transformation was performed, and the
transformed values were included in the analyses.

Minimum field infection rate (MIR) was used to
measure the rates of infection in mosquito popula-
tions and was calculated using the following formula
(Reeves and Hammon 1962):

Minimum field infection rate

¼ Number of positive mosquito pools

Number of mosquitoes across all tested pools

� �

3 1;000:

MIR was calculated for each county half-month by
summing all test results from pools—groups of
homogenized (i.e., ground together) mosquitoes—
obtained during that half-month, summing the
number of mosquitoes within each tested pool, and
then using the above formula. Because of a
moderately positively skewed distribution and ex-
cessive variability, a square root transformation was
performed on the raw MIR values prior to the
analyses.

Human and equine cases: The New Jersey human
and equine surveillance programs are both passive.
New Jersey administrative code stipulates that human
cases of arboviral diseases be reported to NJDOH
within 24 h of diagnosis. For WNV, diagnosis is
made on the basis of a positive test result (real-time
polymerase chain reaction [RT-PCR] or serology).
Upon report to NJDOH, cases are investigated by
public health officials and classified according to
Centers for Disease Control case definitions (CDC
2015). Cases are documented and stored in the New
Jersey Communicable Disease Reporting and Sur-
veillance System database, which is a web-enabled
electronic communicable disease registry that accepts
electronic and manual entry of lab results and case
details. For equine surveillance, blood samples are
extracted from horses by veterinarians if WNV is
suspected. Specimens are sent to the New Jersey
Department of Agriculture Animal Health Diagnostic
Lab, which then determines case status based on test
results, and positive results (RT-PCR or serology) are
reported to NJDOH.

Human and equine cases were defined and
processed similarly. All confirmed and probable
cases with a date of symptom onset occurring during

a half-month within the study period were included in
the analysis. Number of human cases was recoded
into 3 categories: 0, 1, and 2 or more cases. The
equine cases variable was binary (0/1) because the
maximum number of cases across all half-months
was 1.

Data analyses: To identify different categories of
risk, a latent profile analysis (LPA) was utilized. This
technique is used to identify discrete, homogenous
subgroups (e.g., WNV risk categories) within a larger
population when the presence and number of these
subgroups is unknown (Vermunt and Magidson
2002). Mplus 8.2 (Muthen and Muthen 2017) was
used to estimate the LPA models and allows for the
inclusion of continuous, count, nominal, and ordinal
variables. SAS 9.4 for Windows (SAS Institute, Cary,
NC) was used to perform descriptive analyses.

To control for the effect of within-county
variability, county was specified as a clustering
variable. Multiple measurement models were tested:
a null model specifying 1 profile and 4 additional
models specifying 2, 3, 4, and 5 risk profiles,
respectively.

Model selection was based upon an evaluation of
several model characteristics including profile inter-
pretability, prevalence of profile groups, and model
fit statistics. Profile group prevalence estimates of
less than 5% of observations suggested the presence
of a noninformative group, and any models contain-
ing a noninformative group were discarded. We also
evaluated the Akaike information criteria (AIC),
Bayesian information criteria (BIC), sample-size–
adjusted BIC (SSA-BIC), and log-likelihood (LL)
model fit statistics, with lower values on each
indicating better model fit. To evaluate the separation
across latent profiles, we used the entropy measure,
which has values ranging from 0.0 to 1.0 with values
closer to 1.0 indicating better class separation
(Celeux and Soromenho 1996).

The maximum likelihood estimate with robust
standard errors (MLR) estimator was used to account
for the non-normal distributions of risk indicators.
The MLR is appropriate for models containing
categorical latent variables (i.e., mixture models)
and is robust to nonindependence of observations
(e.g., observations nested within counties) and non-
normality of observed variables (Muthen and Muthen
2017). As part of the model estimation process in
Mplus, full-information maximum likelihood estima-
tion was used to handle missing values (3.7% of all
values).

RESULTS

Summary statistics are reported for the 6 risk
indicators in Table 1. The transformations performed
on abundance, MIR, and precipitation reduced
variability substantially and reduced skewness and
kurtosis to within acceptable ranges (6 2.0 for
skewness and 6 7.0 for kurtosis; West et al. 1995).
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Although models with various variable operation-
alizations and specifications were conducted, the
specification of risk indicators selected for the final
model included total Cx. mix abundance (log10[xþ2]
transformed), Cx. mix MIR (square root trans-
formed), average temperature, and human case count
(percent of observations with 0, 1, and . 2 cases,
respectively). Equine cases and total precipitation
were removed from the model because their levels
were similar across profile groups, thus failing to
contribute to the interpretability of the profiles.

Fit indices for the 5 LPA models tested with the
above variable specification are shown in Table 2. As
each additional class was added to the model, the LL,
AIC, BIC, and SSA-BIC all decreased, suggesting
progressively better fit as classes were added.
Moreover, latent class separation was similar across
the 2–5 class models as evidenced by the entropy
values all sitting near or above 0.80. We ultimately
chose the 3-class model because it provided inter-
pretable and practically applicable classes while also
being the most consistent with previous research on
the variables.

The parameter estimates provided by the 3-class
model are shown in Table 3. The largest group was
labeled Moderate Risk because mosquito abundance
was high relative to the other classes, but both MIR
and the probability of human cases were low. The
Low Risk class was labeled as such because the
estimated mean values of the continuous variables
were below the full-sample means, and there was a
very low estimated likelihood of human cases. The
High Risk group was labeled as such due to the
relatively high estimated proportion of half-months
with 1 or more cases, and the elevated MIR. Notably,
the Moderate and High Risk classes displayed

estimated temperature levels roughly in line with
the full-sample mean temperature, while the temper-
ature estimate for the Low Risk class fell well below
average.

Figure 1 shows the distribution of risk categories
over the course of the mosquito season across all
years and counties. The bar to the left of the black
line represents all county half-months combined (N¼
3,465). Each bar to the right of the black line
represents all observations across all years and
counties during a specific half-month (n ¼ 315 per
half-month).

Visual inspection of Fig. 1 revealed that earlier in
the season (late May–July), Moderate Risk was most
likely to be present, with 67–98% of observations
classified as such. Moving into August and Septem-
ber, High Risk became most common, with 53–63%
of observations classified as High Risk. At the close
of the season in late October, risk diminished
substantially, as about 4 of 5 observations during
this half-month were classified as Low Risk.

DISCUSSION

The current study was conducted by NJDOH to
develop an index for use by counties that could
classify the level of transmission risk to humans
based on a county’s current level of WNV activity.
As such, we sought to identify patterns of WNV
activity indicators that suggested different levels of
current viral circulation. Our initial model included 6
variables: mosquito minimum field infection rate and
total abundance; human and equine WNV cases; and
average temperature and total precipitation. Our final
model excluded equine cases and total precipitation.

Table 1. Means and standard deviations of variables: all New Jersey counties, 2004–2018.

Variable, unit Untransformed Transformed N1

Total Culex mix abundance (standard deviation [SD]), no. 245.9 (440.0) 1.9 (0.8)2 3,234
Cx. mix minimum field infection rate (SD),

(no. positive mosquito pools/mosquito) 3 1,000
4.4 (8.0) 1.4 (1.6)3 3,003

Total precipitation (SD), inches 5.4 (4.5) 2.1 (0.9)3 3,393
Average temperature (SD), 8F 69.8 (6.6) — 3,457
Human case count (% 1 case, � 2 cases) 4.5, 0.9 — 3,465
Equine case count (% 1 case) 0.8 — 3,465

1 N observations used in models ¼ 3,465.
2 log10(x þ 2) transformed.
3 Square root transformed.

Table 2. Model fit indices for 1–5 class solutions: all New Jersey counties, 2004–2018.1

Classes LL FP AIC BIC SSA-BIC Entropy

1 �21,714.7 8 43,445.5 43,494.7 43,469.2 —
2 �21,226.5 14 42,481.0 42,567.1 42,522.6 0.78
3 �20,857.3 20 41,754.6 41,877.6 41,814.1 0.75
4 �20,615.3 26 41,282.5 41,442.4 41,359.8 0.82
5 �20,284.3 32 40,632.6 40,829.4 40,727.7 0.82

1 AIC, Akaike information criteria; BIC, Bayesian information criteria; FP, free parameters; LL, log-likelihood; SSA-BIC, sample-size–
adjusted BIC.
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We used LPA to develop a model that best
represented the patterns of risk indicators collected
from all 21 New Jersey counties from late May
through October during 2004–2018, adjusting for the
influence of county-level clustering on categorical
latent class membership. Models ranging from 1 to 5
classes were tested, and it was determined that the
best-fitting model contained 3 classes, which we
labeled as Low, Moderate, and High Risk.

The analysis revealed that Moderate Risk was
most common during late spring through mid-
summer (May–July), when mosquito populations
are rising due, in part, to increases in temperature
that accelerate mosquito development (Ciota and
Keyel 2019). However, mosquito infection rates
during this time remain low; thus, the likelihood of
human infections is quite low. That said, high

abundance paired with temperatures similar to the
High Risk class may create the conditions for rapid
WNV amplification and possible spillover into
humans and equines. Accordingly, Moderate Risk
periods tend to precede High Risk periods, which is
consistent with past research showing that high
abundance predicts subsequent spikes in MIR and
the onset of initial human cases about 4–7 wk later
(Bolling et al. 2009). Moreover, adulticidal treat-
ments early in the season, soon after initial detection
of WNV infection in mosquitoes, have been found to
reduce abundance levels and slow WNV transmis-
sion to humans (Lothrop et al. 2008). These data
suggest that interventions intended to reduce mos-
quito populations will likely have the greatest impact
if they are implemented during early-season Low and
Moderate Risk time periods, as they may diminish

Table 3. Estimated means and probabilities by class: all New Jersey counties, 2004–2018.1

Full sample
(N ¼ 3,465)

Low risk
(14.4%;

n ¼ 499)

Moderate risk
(54.5%;

n ¼ 1,888)

High risk
(31.1%;

n ¼ 1,078)

Total Culex mix abundance,2 mean (standard
deviation [SD])

74.6 (4.0) 7.1 132.0 74.4

Cx. mix minimum field infection rate,3 mean (SD) 1.8 (2.6) 0.1 0.2 10.9
Average temperature, mean (SD) 69.8 (6.6) 59.8 71.5 71.5
Human case count (% half-months with cases)

0 94.6 98.8 98.5 85.8
1 4.5 1.2 1.4 11.5
2þ 0.9 0.0 0.1 2.6

1 Latent profile analysis performed to estimate means and probabilities reported above. Within class sample sizes are estimates and have
been rounded to the nearest integer.

2 Variable was log10(xþ 2) transformed in analysis; back-transformed (10x � 2) value shown.
3 Variable was square root transformed in analysis; back-transformed (x2) value shown.

Fig. 1. Risk category distributions across all half-months: all New Jersey counties, 2004–2018. N overall ¼ 3,465
observations, across all 21 New Jersey counties; n per half-month¼315. There are slight differences between the class size
estimates (i.e., proportions) shown in Table 3 and the overall proportions reported in this figure (see bar to left of black line
labeled ‘‘OVERALL’’). The reason for these differences is because the former accounts for measurement error in the
estimates, while the latter does not. Table 1 includes the parameter estimates of class size generated by the latent profile
analysis. The overall proportions reported in this figure are based on probabilities of membership within each class for
individual observations. For the purposes of this figure, each observation was placed in the class in which the probability of
membership was the highest. Thus, the OVERALL bar in this figure summarizes the most likely class membership of all
observations in the sample.
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the number of older females—which are more likely
than younger females to be infected—later in the
season. And the reduction of infected female
mosquitoes may, in turn, curtail transmission to
humans.

Interestingly, during the High Risk periods which
predominate in late summer (August–September),
mosquito populations decline in abundance while
infections spike. Declining mosquito abundance may
be influenced by the reduction in mosquito breeding
grounds throughout the summer as the hot and dry
conditions reduce the availability of standing water
sources (Carrieri et al. 2014). Additionally, mosquito
control actions such as ground and aerial larviciding
as well as truck-mounted adulticide spraying typi-
cally intensify during periods of high abundance (G.
Williams and J. Gruener personal communication,
November 17, 2020) and contribute to reductions in
mosquito abundance and mosquito infection rates
(Elnaiem et al. 2008).

The high mosquito infection rates during High
Risk periods may be influenced by the characteristics
of both the mosquito and avian populations during
the late summer months. Specifically, mathematical
modeling points to an inverse relationship between
mosquito population density and proportion of
infected mosquitoes (Smith et al. 2004). Thus, the
older mosquitoes that remain later in the season are
more likely to be infected, while fewer young
mosquitoes emerge because of the diminished
availability of breeding sites. Additionally, human
infection risk is elevated during High Risk periods
due, in part, to human behavior patterns that increase
the risk of interaction with infected mosquitoes, such
as spending time outdoors in clothing that leaves skin
exposed.

The Low Risk periods are most common in
October when levels of all risk index indicators drop
substantially. As temperatures fall and older mosqui-
toes that may be infected die off, most of the
remaining population includes young mosquitoes
programmed for diapause (Spielman 2001). The
latter seek only nectar, rather than blood meals, to
build fat stores in preparation for the winter
(Denlinger and Armbruster 2014). Moreover, humans
are less likely to engage in behaviors placing them at
risk for infection.

Despite the associations with human WNV cases
identified in previous research, we found minimal
differences in the proportions of equine cases across
classes. This finding suggests that equine cases are a
poor indicator of WNV activity, likely due to the
limited number of cases—equine cases were present
in 26 of the 3,465 observations (0.8%). The low
occurrence of WNV in horses may be the result of
underreporting and/or high rates of natural immunity
(from previous infections) or vaccine-induced im-
munity (Kilpatrick and Pape 2013).

The spatial resolution of the data is one limitation
of this study. Specifically, aggregating data to the
county level implies that WNV activity is the same

throughout the county, but it likely varies substan-
tially within counties. The relatively low spatial
resolution may have contributed to the lack of
variability in the precipitation variable, for which
county-level aggregates are less informative. Previ-
ous research where the geographical location of
interest was broken into spatial grids of 13 km2 found
that precipitation was a significant predictor of future
mosquito abundance and infection rate (Little et al.
2016). Additionally, we excluded variables from the
analysis for which associations with mosquito
abundance and infection rate and human WNV
occurrence have been identified. These variables
include but are not limited to soil moisture (Little et
al. 2016, Lockaby et al. 2016), dead bird clusters
(Mostashari et al. 2003), and land cover and housing
density (Lockaby et al. 2016). The variables were not
collected or could not be compiled due to limited
resource availability and because we sought to use
only variables which would be convenient for local
jurisdictions and NJDOH to access and track
prospectively.

The profiles derived from our analysis suggest the
presence of Low, Moderate, and High Risk periods of
WNV transmission, each with a unique pattern of
variable manifestation that can be used guide public
health interventions. The Low Risk profile is
characterized by relatively low levels of all variables.
Thus, public health actions focused on integrated
mosquito management strategies to reduce mosquito
populations are advisable in these conditions.

The Moderate Risk profile shares features with
both the High and Low Risk profiles; however, the
very high abundance level is a clear differentiator.
The presence of this feature points to the importance
of intensified larval and adult mosquito population
control measures and increased messaging to the
public about protecting oneself from mosquitoes.

The distinguishing features of the High Risk
profile are mosquito infection rates and probability
of human infection well above the other risk classes
during periods when temperatures are sufficient to
facilitate more accelerated mosquito breeding and
development. Thus, public health actions during
High Risk periods should be focused on driving
down adult mosquito populations and urging resi-
dents to modify behavior to reduce their infection
risk.

Traditionally, mosquito control and public health
officials have had to interpret each of these indicators
of WNV risk separately to inform public health risk
mitigation actions. Our risk index combines those
variables and reveals unique profiles at each risk
level that can aid officials in communicating the need
for additional resources and applying the right
intervention at the right time, thus optimizing those
resources. It is important to note that our index
represents current WNV transmission risk based on
data collected in the previous 2 wk; thus, the index
should not be used as a predictive measure of future
risk.
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